Acta Crystallographica Section C
Crystal Structure

Two polycyclic compounds derived from a Diels-Alder reaction

J. Zukerman-Schpector, ${ }^{\text {a,b}}{ }^{\text {b }}$ I. Caracelli, ${ }^{\text {a Mauricio Vega, }}{ }^{\text {a }}$ Mauricio Gomes Constantino, ${ }^{\text {c }}$ Adilson Beatriz ${ }^{\text {c }}$ and Gil Valdo da Silva ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento Química, Universidade Federal de São Carlos, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil, ' ${ }^{\text {Instituto de Química, Universidade de São Paulo, }}$ São Paulo, SP, Brazil, and ${ }^{\text {c }}$ Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil Correspondence e-mail: julio@power.ufscar.br

Received 4 December 2000
Accepted 16 February 2001
In both 9,10-dimethoxy-11-oxatricyclo[6.2.1.0 $0^{2,7}$]undeca-4,9-diene-3,6-diol, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$, (I), and 5,6-dimethoxy-3,7-dioxatetracyclo[6.4.0.0 $0^{2,6} .0^{4,12}$]dodec-9-en-11-ol, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$, (II), the hetero-oxygen-containing five-membered rings have an envelope conformation. The six-membered rings are in a boat conformation in compound (I), and in (II), one is in a halfboat and the other is in a slightly distorted boat conformation. The molecules in both compounds interact through classical hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

Heliangolides are interesting natural products containing a polymacrocyclic structure (da Costa et al., 1993). Our investigation, aimed at the synthesis of these macrocyclic structures, started with the Diels-Alder reaction between 3,4-dimethoxyfuran and benzoquinone in benzene. The product, (III), was further reduced with sodium borohydride in the presence of ceric chloride to give (I). Due to the cage-like structure of (III), which should prevent the approach of the reagent to the concave face of the substrate, a very high stereoselectivity is expected. In fact, only one product was isolated. We noticed that compound (I) was converted into a different crystalline product, which could be (II) or (IV), within a few hours when kept in chloroform at room temperature. This unexpected result prompted us to proceed with detailed X-ray crystal structure determinations of (I) and the other product, which was identified as (II).

In order to establish possible changes in the conformations of and distances between the functional groups in the molecules, when released from interactions with surrounding molecules in the crystalline state, a series of semi-empirical (AM1 and PM3) and ab initio quantum chemical calculations were performed. This study should help in postulating a mechanism for the transformation of (I) into (II). The calcu-
lations were carried out using the $6-31 G^{* *}$ basis set of the MOPAC7.01 (Stewart, 1990; Csern, 2000) and GAMESS 98 (Schmidt et al., 1993) packages.

The molecular structure of (I) is shown in Fig. 1. Table 3 gives the Cremer \& Pople (1975) puckering parameters. As in other norbornenes (Zukerman-Schpector et al., 1999), the sixmembered ring ($\mathrm{C} 1, \mathrm{C} 2$ and $\mathrm{C} 7-\mathrm{C} 10$) is in a boat conformation. The 'boat' is almost symmetric, with a dihedral angle between the planes defined by $\mathrm{C} 1 / \mathrm{O} 1 / \mathrm{C} 8$ and $\mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10$ of $86.4(1)^{\circ}$, and with equal deviations of C 8 and C 1 from the $\mathrm{C} 2 /$ C7/C9/C10 plane of 0.794 (3) \AA; the deviations of O4 and O5 from the $\mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10$ plane are 0.598 (3) and 0.812 (3) \AA, respectively. The two hetero-oxygen-containing fivemembered rings have envelope conformations, with O1 displaced 0.867 (2) \AA from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 8$ plane and 0.787 (3) \AA displaced from the $\mathrm{C} 1 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10$ plane. The C2C7 six-membered ring is also in a boat conformation, and makes dihedral angles of $11.1(1)^{\circ}$ with the $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 8$ bridge and $75.29(8)^{\circ}$ with the $\mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10$ plane.

The molecular diagram of (II) is shown in Fig. 2. Table 6 gives the Cremer \& Pople (1975) puckering parameters. The ring formed by atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 6, \mathrm{C} 5, \mathrm{C} 4$ and C 12 adopts a slightly distorted boat (towards a half-boat) conformation, which is imposed by O 1 bridging C 2 and C 4 . Atoms C 2 and C 4 deviate from the plane defined by $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 12$ [planar to within 0.015 (1) \AA] by 0.971 (3) and 0.712 (3) \AA, respectively. The $\mathrm{C} 1 / \mathrm{C} 8-\mathrm{C} 12$ ring is in a half-boat conformation and makes dihedral angles of 18.51 (8), 88.78 (7) and 71.94 (8) ${ }^{\circ}$ with the $\mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 4, \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 12$ and $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 6 / \mathrm{O} 2 / \mathrm{C} 8$ planes, respectively. The three hetero-oxygen-containing five-

Figure 1
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The molecular structure of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
membered rings have envelope conformations, as shown in Table 3, with O1 displaced 0.804 (3) \AA from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 12$ plane and 0.771 (3) \AA from the $\mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ plane, and C 2 displaced 0.564 (3) \AA from the $\mathrm{C} 1 / \mathrm{C} 8 / \mathrm{O} 2 / \mathrm{C} 6$ plane.

In Tables 2 and 5 it is shown that in (I), molecules are linked by several classical hydrogen bonds and a short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, while in (II), the molecules are linked only by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ short interactions. In both cases, these might be described as hydrogen-bonding interactions. However, as pointed out by Cotton et al. (1997), 'the field is getting muddier and muddier as the definition of a hydrogen bond is relaxed'. Therefore, we only choose those with a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle greater than 100° and an $\mathrm{H} \cdots \mathrm{O}$ distance of up to $2.73 \AA$, which corresponds to the sum of the van der Waals radii of O and H , as given by Pauling (1960), plus 5%.

The geometry optimization calculations on (I), using the three methods mentioned above ($A M 1, P M 3$ and ab initio), showed three main conformational changes. Firstly, the C2$\mathrm{C} 3-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$ torsion angle changes from 180 to 71°, to give an $\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 5$ distance of $2.28 \AA$ (less than the sum of the van der Waals radii). It should be noted that in the crystal, this OH moiety is involved in an intermolecular hydrogen bond (Table 2). Secondly, the $\mathrm{C} 13-\mathrm{O} 5-\mathrm{C} 10-\mathrm{C} 1$ torsion angle changes from 39.9 (3) to 71.1°, to leave space for atom H2O. Thirdly, the $\mathrm{H} 3 \mathrm{O}-\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 7$ torsion angle changes from 67 to -69°, to give a final $\mathrm{H} 3 \cdots \mathrm{O} 4$ distance of $2.33 \AA$. Recall that in (I), the $\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$ hydroxyl group is involved in an intermolecular hydrogen bond and in (II), it forms an intramolecular hydrogen bond (Table 5). These results strongly suggest that the transformation of (I) into (II) is by the mechanism shown below.

Experimental

Brief details of the preparation of (I) and (II) are given in the Comment. In order to prevent transformation into (II), (I) was kept
in and crystallized from ethyl acetate. Suitable crystals of (II) were obtained by slow evaporation from an ethanol solution.

Compound (I)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
$M_{r}=240.25$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.0796$ (4) A
$b=10.1970$ (7) \AA
$c=13.7534$ (9) \AA
$V=1133.11(12) \AA^{3}$
$Z=4$
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffract-

ometer

$\omega / 2 \theta$ scans
1235 measured reflections
1235 independent reflections
1131 reflections with $F^{2}>2 \sigma F^{2}$
$\theta_{\text {max }}=25.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.071$
$S=1.05$
1235 reflections
156 parameters
H-atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 25 reflections $\theta=10.0-18.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular, colourless
$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$

$$
\begin{aligned}
& h=-9 \rightarrow 0 \\
& k=-12 \rightarrow 0 \\
& l=0 \rightarrow 16
\end{aligned}
$$

3 standard reflections frequency: 30 min intensity decay: 1.0%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0386 P)^{2}\right. \\
& +0.2105 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.13 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{\circ} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

O1-C8	$1.448(2)$	O3-C6	$1.431(2)$
O1-C1	$1.455(2)$	C4-C5	$1.321(3)$
O2-C3	$1.418(2)$	C9-C10	$1.334(3)$
C8-O1-C1	$95.09(13)$	C5-C4-C3	$121.2(2)$
C9-O4-C11	$116.61(16)$	C4-C5-C6	$121.6(2)$
C10-O5-C12	$116.29(16)$	O1-C8-C9	$101.15(15)$
O1-C1-C10	$100.82(14)$	O1-C8-C7	$100.12(15)$
O1-C1-C2	$99.41(15)$	C9-C8-C7	$111.22(16)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2$	0.96	2.55	$3.273(3)$	133
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.03	$2.815(2)$	139
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots 4^{\mathrm{i}}$	0.95	2.36	$3.094(2)$	133
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{Ol}^{\mathrm{ii}}$	0.93	1.87	$2.788(2)$	173
$\mathrm{C} 1-\mathrm{H} 1 \cdots 5^{\mathrm{iii}}$	0.98	2.62	$3.383(2)$	135

Symmetry codes: (i) $\frac{1}{2}-x, 2-y, z-\frac{1}{2}$; (ii) $x-\frac{1}{2}, \frac{3}{2}-y, 2-z$; (iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.

Table 3
Cremer \& Pople (1975) puckering parameters ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

Ring	q_{2}	q_{3}	φ_{2}	θ_{2}	Q
O1/C1/C2/C7/C8	$0.614(2)$		$1.0(2)$		
O1/C1/C10/C9/C8	$0.533(3)$		$179.2(2)$		
C1/C2/C7/C8/C9/C10	$0.917(2)$	$0.002(2)$	$-1.3(1)$	$89.9(1)$	$0.917(2)$
C2/C3/C4/C5/C6/C7	$0.496(2)$	$-0.010(2)$	$-120.7(2)$	$91.1(3)$	$0.497(2)$

Compound (II)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
$M_{r}=240.25$
Monoclinic, C2/c
$a=7.545$ (1) \AA
$b=10.750$ (1) \AA
$c=27.336$ (3) \AA
$\beta=94.69$ (2) ${ }^{\circ}$
$V=2209.8$ (4) \AA^{3}
$Z=8$
$D_{x}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=9.9-18.2^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=29 \mathrm{~K}$
Irregular, colourless
$0.25 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
4326 measured reflections
2038 independent reflections
1513 reflections with $F^{2}>2 \sigma F^{2}$
$R_{\text {int }}=0.026$

$$
\begin{aligned}
& \theta_{\max }=25.5^{\circ} \\
& h=-7 \rightarrow 9 \\
& k=-7 \rightarrow 12 \\
& l=-33 \rightarrow 33 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 30 \text { min } \\
& \text { intensity decay: } 1.1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.100$
$S=1.06$
2038 reflections
156 parameters
H -atom parameters constrained

Table 4
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (II).

O1-C2	$1.435(3)$	O2-C8	$1.454(2)$
O1-C4	$1.444(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.319(3)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.408(2)$		
			$99.60(17)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 4$	$96.72(15)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	$99.60(15)$
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 8$	$108.91(15)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$100.40(16)$
$\mathrm{C} 6-\mathrm{O} 4-\mathrm{C} 14$	$114.67(15)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 12$	$115.55(18)$
$\mathrm{C} 5-\mathrm{O} 5-\mathrm{C} 13$	$112.42(15)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 12$	$123.0(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$106.58(16)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$125.9(2)$
O1-C2-C6	$103.88(16)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	

Table 5
Hydrogen-bonding geometry $\left({ }^{\AA},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 5$	1.06	1.95	$2.849(2)$	140
$\mathrm{C} 13-\mathrm{H} 13 C \cdots \mathrm{O} 2$	0.96	2.60	$3.133(3)$	115
$\mathrm{C} 13-\mathrm{H} 13 A \cdots 1^{\mathrm{i}}$	0.96	2.61	$3.325(3)$	132
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.47	$3.320(3)$	144
${\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{iii}}}^{2}$	0.98	2.74	$3.648(3)$	154

Symmetry codes: (i) $\frac{1}{2}+x, y-\frac{1}{2}, z$; (ii) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (iii) $2-x, y, \frac{1}{2}-z$.

In spite of the rather poor diffraction quality of (I), the main aim of the work was achieved, which was to obtain the relevant structural information. H atoms were located on stereochemical grounds, except those of the hydroxyl groups, and were refined as riding, with an isotropic displacement parameter amounting to 1.5 (for methyl H atoms) or 1.2 (for the other H atoms) times the value of the

Table 6
Cremer \& Pople (1975) puckering parameters ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

Ring	q_{2}	q_{3}	φ_{2}	θ_{2}	Q
O1/C2/C1/C12/C4	$0.549(2)$		$164.4(2)$		
O1/C2/C6/C5/C4	$0.568(2)$		$-10.4(2)$		
C1/C2/C6/O2/C8	$0.357(2)$		$34.7(3)$		
C1/C2/C6/C5/C4/C12	$0.978(2)$	$-0.133(2)$	$-121.7(1)$	$97.8(1)$	$0.987(2)$
C1/C8/C9/C10/C11/C12	$0.225(2)$	$-0.179(2)$	$-179.0(5)$	$128.6(4)$	$0.288(2)$

equivalent isotropic displacement parameter of the parent atom. H atoms bound to O atoms were located in difference maps.

For both compounds, data collection: CAD-4 Software (EnrafNonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD-4 (Harms \& Wocadlo, 1995). For compound (I), program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); for compound (II), SIR92 (Altomare et al., 1993). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1995); software used to prepare material for publication: PARST95 (Nardelli, 1995), PLATON (Spek, 1998) and WinGX (Farrugia, 1999).

This work has received partial support from FAPESP (Proc. 94/1213-5), CNPq and CAPES. MV acknowledges FAPESP for a PhD fellowship (98/13927-3). The X-ray facility at the Instituto de Química-USP was installed with a grant from FAPESP (94/2061-4).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1175). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Costa, F. B. da, Dias, D. A., Lopes, J. L. C. \& Vichnewski, W. (1993). Phytochemistry, 34, 261-265.
Cotton, F. A., Daniels, L. M., Jordan, G. T. IV \& Murillo, C. A. (1997). J. Chem. Soc. Chem. Commun. pp. 1673-1674.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Csern, I. (2000). MOPAC7.01 for LINUX (public domain version). Institute of Nuclear Research, Hungarian Academy of Science, Debrecen, Hungary.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD-4. University of Marburg, Germany.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus,
T. S., Dupuis, M. \& Montgomery, J. A. (1993). J. Comput. Chem. 14, 13471363.

Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. University of Utrecht, The Netherlands.
Stewart, J. J. P. (1990). J. Comput. Aided Mol. Des. 4, 1-105.
Zsolnai, L. (1995). ZORTEP. University of Heidelberg, Germany.
Zukerman-Schpector, J., Gruber, J. \& Camilo, F. F. (1999). Acta Cryst. C55, 980-983.

